Chapter 4. Greedy Algorithms

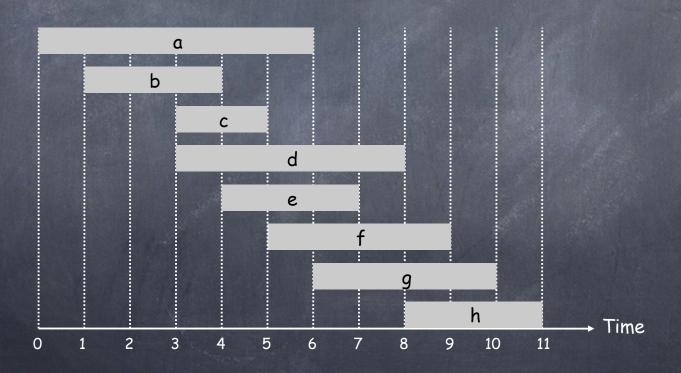
- Interval scheduling
- Greedy overview
- Shortest paths
- Minimum spanning trees

What is a greedy algorithm?

Hard to describe, but I know it when I see it!

Interval Scheduling

- Schedule n jobs: jth job has start time s_j, finish time f_j.
- Two jobs compatible if they don't overlap.
- @ Goal: find maximum size subset of mutually compatible jobs.

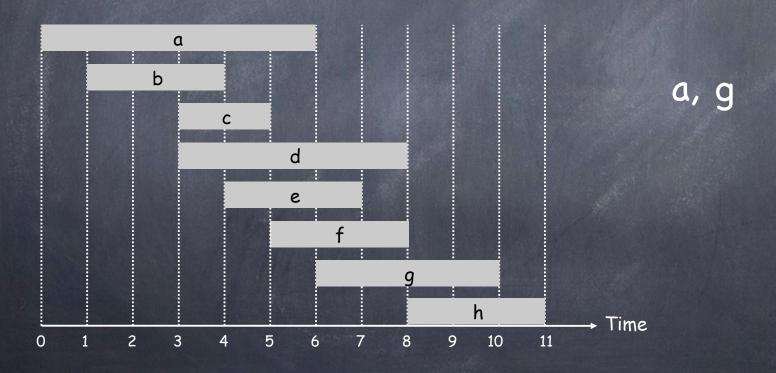


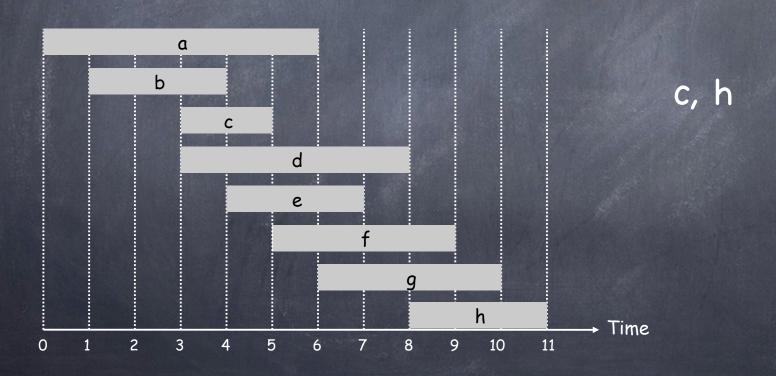
Greedy Template

```
A ← {}
while (there are jobs compatible with A)
  pick "best" compatible job j
    A = A ∪ {j}
}
return A
```

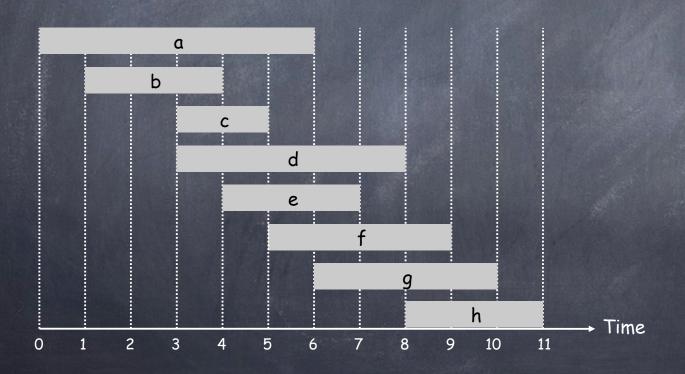
Greedy: pick j and never look back What rule to use?

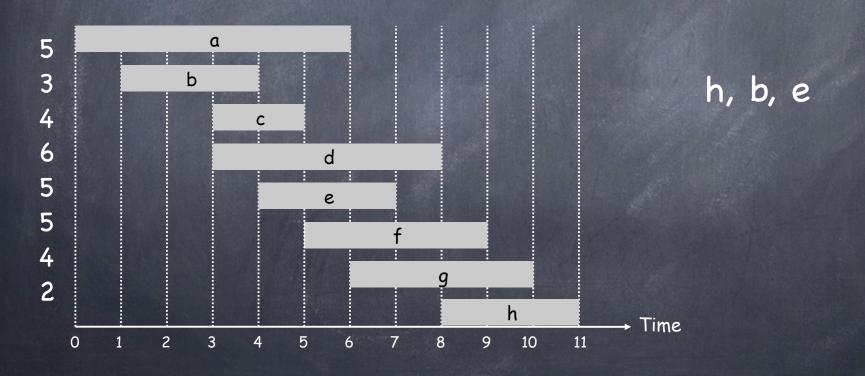
Idea 1: Earliest start time. Consider jobs in ascending order of start time s_j.

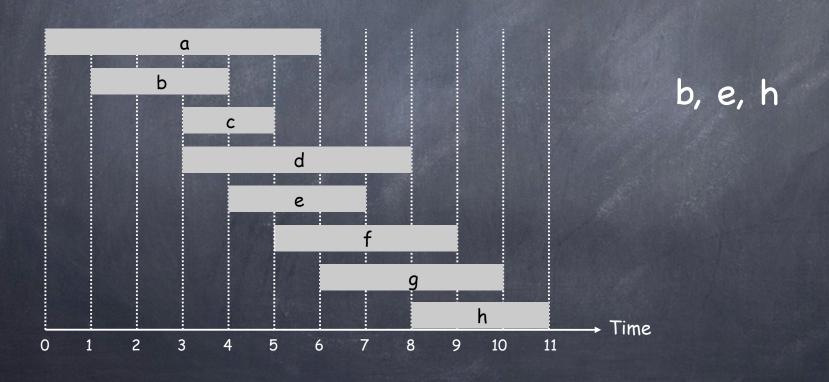




Idea 3: Fewest conflicts. For each job, count the number of conflicting jobs c_j. Schedule in ascending order of conflicts c_i.







Earliest Finish Time -Optimal Solution

Sort jobs by finish times so that $f_1 \le f_2 \le ... \le f_n$.

```
A ← {}

for j = 1 to n {

  if (job j compatible with A)

    A = A ∪ {j}
}

return A
```

Proof and running time on board

Greedy Overview

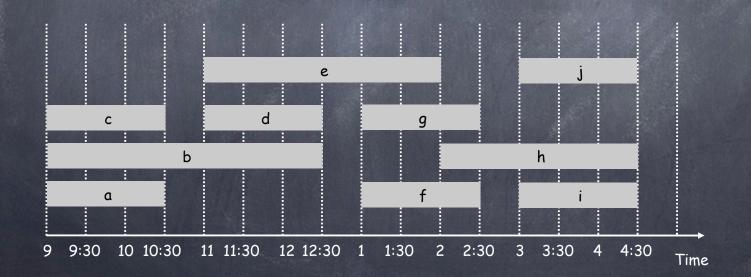
- Build up solution by adding items one at a time
- Choose next item by simple heuristic, never remove items
- Prove that the result is optimal!

- Simple algorithm -> hard part is proving it correct
- Running time usually n log n or worse: need to sort items

Interval Partitioning

Lecture j starts at s_j and finishes at f_j .

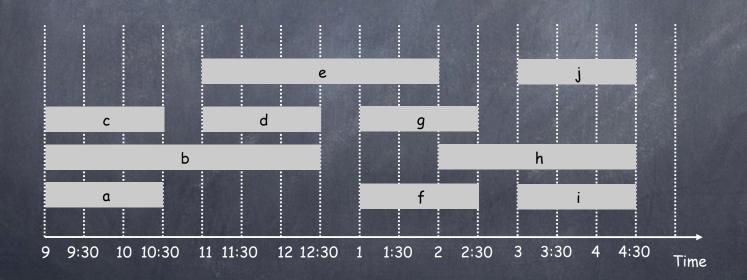
Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.



Interval Partitioning Lower Bound

The depth of a set of intervals is the maximum number that contain any point in time-line.

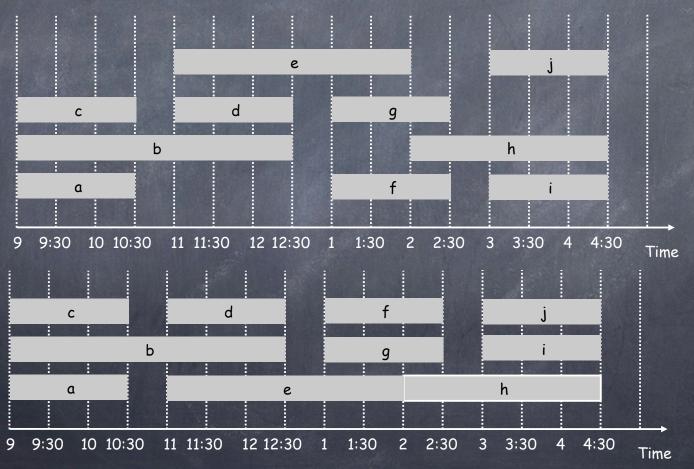
Key observation. Number of classrooms needed ≥ depth.



Interval Partitioning Lower Bound

Example: Depth of schedule below = 3

Question: Does there always exist a schedule equal to depth of intervals?



Idea

- Number classrooms 1, 2, 3, ...
- Sort intervals in some order: for each interval, assign it to first available classroom
- What order?

Interval Partitioning: Greedy Solution

```
Sort intervals by starting time so that s_1 \le s_2 \le ... \le s_n.
k \leftarrow 0 // Number of classrooms
for j = 1 to n {
  if (lecture j is compatible with some classroom i \leq k)
     schedule lecture j in classroom i
  else
     allocate a new classroom k + 1
     schedule lecture j in classroom k + 1
     k \leftarrow k + 1
```

Complexity?

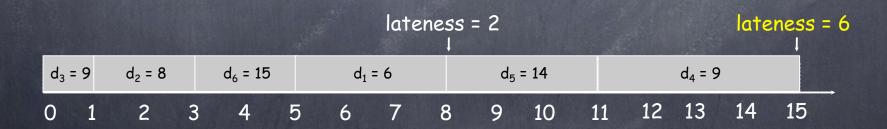
Scheduling to Minimize Lateness

- Single computer processes one job at a time.
- - Processing time t_i
 - Deadline di
 - The Start time s_i -> finish time $f_i = s_i + t_i$.
- Lateness: $l_i = \max_{1 \le i \le n} \{0, f_i d_i\}.$

Scheduling Example

Job 2 3 5 4 6 Processing time 3 2 4 3 †_i 9 Deadline di 14

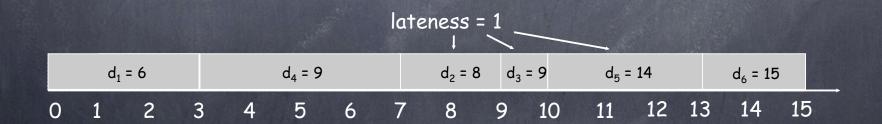
Attempt 1: Sort by t



Max lateness: 6

Scheduling Example: Smallest Slack time first

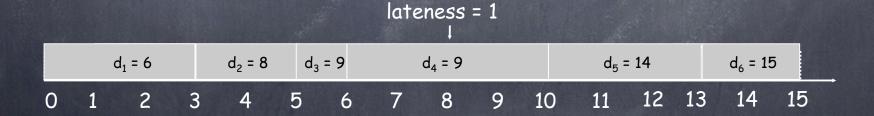
	1	2	3	4	5	6
ti	3	2	1	4	3	2
d _i	6	8	9	9	14	15
slack _i	3	6	8	5	11	13



Max lateness: 1

Scheduling Example: Earliest Deadline First

	1	2	3	4	5	6
† _i	3	2	1	4	3	2
di	6	8	9	9	14	15



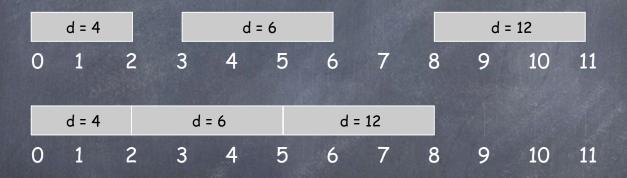
Max lateness: 1

Minimizing Lateness: Analysis

- Claim: scheduling jobs by their deadline is optimal
- Let's establish some basic facts for the proof...

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.



Observation. The greedy schedule has no idle time.

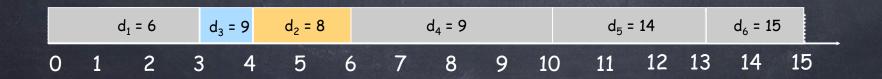
Minimizing Lateness: Proof Approach

- Discuss and outline on board

Minimizing Lateness: Inversions

An inversion in schedule S is a pair of jobs i and j such that i is scheduled before j but $d_j < d_i$.

	1	2	3	4	5	6
† _i	3	2	1	4	3	2
di	6	8	9	9	14	15



Minimizing Lateness: Inversions

- Goal: modify optimal solution to eliminate inversions to match greedy solution. But: this might not give exactly the greedy solution.
- Lemma A: all solutions with no idle time and no inversions have same maximum lateness
- Proof on board

Minimizing Lateness: Proof!

- Theorem: the greedy solution is optimal
- Proof on board

Proof Strategies for Greedy Algorithms

- Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as an optimal solution.
- Exchange argument. Gradually transform an optimal solution to the one found by the greedy algorithm(*) without hurting its quality.

(*) Or one just like it