
Chapter 4.
Greedy Algorithms

Interval scheduling

Greedy overview

Shortest paths

Minimum spanning trees

What is a greedy
algorithm?

Hard to describe, but I know it when I see it!

Interval Scheduling
Schedule n jobs: jth job has start time sj, finish time fj.
Two jobs compatible if they don't overlap.
Goal: find maximum size subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

Greedy Template

A ← {}
while (there are jobs compatible with A)
 pick “best” compatible job j
 A = A ∪ {j}
}
return A

Greedy: pick j and never look back
What rule to use?

Interval Scheduling: Greedy Solution

Idea 1: Earliest start time. Consider jobs in ascending
order of start time sj.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

a, g

Interval Scheduling: Greedy Solution

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

c, h

Idea 2: Shortest interval. Consider jobs in ascending
order of interval length fj - sj.

Interval Scheduling: Greedy Solution

Idea 3: Fewest conflicts. For each job, count the number
of conflicting jobs cj. Schedule in ascending order of
conflicts cj.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

Interval Scheduling: Greedy Solution

Idea 3: Fewest conflicts. For each job, count the number
of conflicting jobs cj. Schedule in ascending order of
conflicts cj.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h, b, e
5
3
4
6
5
5
4
2

Interval Scheduling: Greedy Solution

Idea 4: Earliest finish time. Consider jobs in ascending
order of finish time fj.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

b, e, h

Earliest Finish Time -
Optimal Solution

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

A ← {}
for j = 1 to n {
 if (job j compatible with A)
 A = A ∪ {j}
}
return A

Proof and running time on board

Greedy Overview

Build up solution by adding items one at a time

Choose next item by simple heuristic, never remove items

Prove that the result is optimal!

Simple algorithm -> hard part is proving it correct

Running time usually n log n or worse: need to sort items

Interval Partitioning
Lecture j starts at sj and finishes at fj.
Goal: find minimum number of classrooms to
schedule all lectures so that no two occur at the
same time in the same room.

Time9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Interval Partitioning Lower Bound

The depth of a set of intervals is the maximum number that
contain any point in time-line.
Key observation. Number of classrooms needed ≥ depth.

Time9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Interval Partitioning Lower Bound
Example: Depth of schedule below = 3
Question: Does there always exist a schedule equal to depth
of intervals?

Time9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Time9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

Idea

Number classrooms 1, 2, 3, ...

Sort intervals in some order: for each interval,
assign it to first available classroom

What order?

Interval Partitioning: Greedy Solution

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn.
k ← 0 // Number of classrooms

for j = 1 to n {
 if (lecture j is compatible with some classroom i ≤ k)
 schedule lecture j in classroom i
 else
 allocate a new classroom k + 1
 schedule lecture j in classroom k + 1
 k ← k + 1
}

Complexity?

Scheduling to Minimize
Lateness

Single computer processes one job at a time.
Jobs i = 1,2,...,n:

Processing time ti

Deadline di

Start time si -> finish time fi = si + ti.
Lateness: li = max { 0, fi - di }.

Goal: schedule start times of all jobs to minimize
maximum lateness L = max li.

1 ≤ i ≤ n

Scheduling Example

di 6

ti 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 2 lateness = 6

Max lateness: 6

Attempt 1: Sort by t

Job

Processing time

Deadline

Scheduling Example:
Smallest Slack time first

di 6

ti 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d3 = 9

lateness = 1

Max lateness: 1

slacki 3 6 8 5 11 13

d1 = 6 d4 = 9 d2 = 8 d5 = 14 d6 = 15

Scheduling Example:
Earliest Deadline First

di 6

ti 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d4 = 9d3 = 9

lateness = 1

Max lateness: 1

d1 = 6 d2 = 8 d5 = 14 d6 = 15

Minimizing Lateness:
Analysis

Claim: scheduling jobs by their deadline is
optimal

Let’s establish some basic facts for the proof...

Minimizing Lateness:
No Idle Time

Observation. There exists an optimal schedule
with no idle time.

0 1 2 3 4 5 6
d = 4 d = 6

7 8 9 10 11
d = 12

0 1 2 3 4 5 6
d = 4 d = 6

7 8 9 10 11
d = 12

Observation. The greedy schedule has no idle
time.

Minimizing Lateness:
Proof Approach

Idea: start with an optimal solution with no idle
time, and gradually transform it into the greedy
solution (*), without increasing the maximum
lateness

Discuss and outline on board

Minimizing Lateness:
Inversions

An inversion in schedule S is a pair of jobs i and j
such that i is scheduled before j but dj < di.

di 6

ti 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d4 = 9d3 = 9d1 = 6 d2 = 8 d5 = 14 d6 = 15

Minimizing Lateness:
Inversions

Goal: modify optimal solution to eliminate
inversions to match greedy solution. But: this
might not give exactly the greedy solution.

Lemma A: all solutions with no idle time and no
inversions have same maximum lateness

Proof on board

Minimizing Lateness:
Proof!

Theorem: the greedy solution is optimal

Proof on board

Proof Strategies for
Greedy Algorithms

Greedy algorithm stays ahead. Show that after
each step of the greedy algorithm, its solution is
at least as good as an optimal solution.

Exchange argument. Gradually transform an
optimal solution to the one found by the greedy
algorithm(*) without hurting its quality.

(*) Or one just like it

