
Chapter 4. 
Greedy Algorithms

Interval scheduling

Greedy overview

Shortest paths

Minimum spanning trees



What is a greedy 
algorithm?

Hard to describe, but I know it when I see it!



Interval Scheduling
Schedule n jobs: jth job has start time sj, finish time fj.
Two jobs compatible if they don't overlap.
Goal: find maximum size subset of mutually compatible jobs.
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Greedy Template

A ← {}
while (there are jobs compatible with A)
   pick “best” compatible job j
      A = A ∪ {j}
}
return A

Greedy: pick j and never look back
What rule to use?



Interval Scheduling:  Greedy Solution

Idea 1:  Earliest start time.  Consider jobs in ascending 
order of start time sj.
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Interval Scheduling:  Greedy Solution
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Idea 2:  Shortest interval.  Consider jobs in ascending 
order of interval length  fj - sj.



Interval Scheduling:  Greedy Solution

Idea 3:  Fewest conflicts.  For each job, count the number 
of conflicting jobs cj. Schedule in ascending order of 
conflicts cj.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d



Interval Scheduling:  Greedy Solution

Idea 3:  Fewest conflicts.  For each job, count the number 
of conflicting jobs cj. Schedule in ascending order of 
conflicts cj.
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Interval Scheduling:  Greedy Solution

Idea 4:  Earliest finish time.  Consider jobs in ascending 
order of finish time fj.
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Earliest Finish Time - 
Optimal Solution

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

A ← {}
for j = 1 to n {
   if (job j compatible with A)
      A = A ∪ {j}
}
return A

Proof and running time on board



Greedy Overview

Build up solution by adding items one at a time

Choose next item by simple heuristic, never remove items

Prove that the result is optimal!

Simple algorithm -> hard part is proving it correct

Running time usually n log n or worse: need to sort items



Interval Partitioning
Lecture j starts at sj and finishes at fj.
Goal:  find minimum number of classrooms to 
schedule all lectures so that no two occur at the 
same time in the same room.

Time9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30



Interval Partitioning Lower Bound

The depth of a set of intervals is the maximum number that 
contain any point in time-line.
Key observation.  Number of classrooms needed  ≥  depth.
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Interval Partitioning Lower Bound
Example:  Depth of schedule below = 3
Question: Does there always exist a schedule equal to depth 
of intervals?
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Idea

Number classrooms 1, 2, 3, ...

Sort intervals in some order: for each interval, 
assign it to first available classroom

What order?



Interval Partitioning: Greedy Solution

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn.
k ← 0    // Number of classrooms

for j = 1 to n {
   if (lecture j is compatible with some classroom i ≤ k)
      schedule lecture j in classroom i
   else
      allocate a new classroom k + 1
      schedule lecture j in classroom k + 1
      k ← k + 1 
}   

Complexity?



Scheduling to Minimize 
Lateness

Single computer processes one job at a time.
Jobs i = 1,2,...,n:

Processing time ti

Deadline di

Start time si -> finish time fi = si + ti. 
Lateness:  li = max { 0,  fi - di }.

Goal: schedule start times of all jobs to minimize 
maximum lateness L = max li.

1 ≤ i ≤ n



Scheduling Example

di 6

ti 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 2 lateness = 6

Max lateness:  6

Attempt 1:  Sort by t

Job

Processing time

Deadline



Scheduling Example:  
Smallest Slack time first
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Scheduling Example:  
Earliest Deadline First
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Minimizing Lateness:
Analysis

Claim: scheduling jobs by their deadline is 
optimal

Let’s establish some basic facts for the proof...



Minimizing Lateness:  
No Idle Time

Observation.  There exists an optimal schedule 
with no idle time.
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Minimizing Lateness:
Proof Approach

Idea: start with an optimal solution with no idle 
time, and gradually transform it into the greedy 
solution (*), without increasing the maximum 
lateness

Discuss and outline on board



Minimizing Lateness:  
Inversions

An inversion in schedule S is a pair of jobs i and j 
such that i is scheduled before j but dj < di.
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Minimizing Lateness:
Inversions

Goal: modify optimal solution to eliminate 
inversions to match greedy solution. But: this 
might not give exactly the greedy solution. 

Lemma A: all solutions with no idle time and no 
inversions have same maximum lateness

Proof on board



Minimizing Lateness:
Proof!

Theorem: the greedy solution is optimal

Proof on board



Proof Strategies for 
Greedy Algorithms

Greedy algorithm stays ahead.  Show that after 
each step of the greedy algorithm, its solution is 
at least as good as an optimal solution. 

Exchange argument.  Gradually transform an 
optimal solution to the one found by the greedy 
algorithm(*) without hurting its quality.

(*) Or one just like it


