Chapter 4.
Greedy Algorithms

@ Interval scheduling
@ Greedy overview
@ Shortest paths

@ Minimum spanning frees



What is a greedy
algorithm?

@ Hard to describe, but I know it when I see it!



Interval Scheduling

@ Schedule n jobs: j™ job has start time s;, finish time f;.

@ Two jobs compatible if they don't overlap.
@ Goal: find maximum size subset of mutually compatible jobs.




Greedy Template

A«
while (there are jobs compatible with A)
pick "best” compatible job j
A=AuU{j}
}

return A

Greedy: pick j and never look back
What rule to use?



Interval Scheduling: Greedy Solution

@ Idea 1: Earliest start time. Consider jobs in ascending
order of start time s;.
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Interval Scheduling: Greedy Solution

@ Idea 2: Shortest interval. Consider jobs in ascending
order of interval length f; - s;.
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Interval Scheduling: Greedy Solufion

@ Idea 3: Fewest conflicts. For each job, count the number
of conflicting jobs c;. Schedule in ascending order of

conflicts c;.
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Interval Scheduling: Greedy Solufion

@ Idea 3: Fewest conflicts. For each job, count the number
of conflicting jobs c¢;. Schedule in ascending order of

conflicts c;.
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Interval Scheduling: Greedy Solufion

@ Idea 4: Earliest finish time. Consider jobs in ascending
order of finish time f;.
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Earliest Finish Time -
Optimal Solution

Sort jobs by finish times so that f; < f, < ... < f,.

A« §
for j=1ton §
if (job j compatible with A)
A =AUt
;

return A

Proof and running time on board



Greedy Overview

@ Build up solution by adding items one at a time
@ Choose next item by simple heuristic, never remove items

@ Prove that the result is optimal!

@ Simple algorithm -> hard part is proving it correct

@ Running time usually n log n or worse: need to sort items



Interval Partitioning

Lecture j starts at s; and finishes at f;.

Goal: find minimum number of classrooms to
schedule all lectures so that no two occur at the
same time in the same room.
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Interval Partitioning Lower Bound

The depth of a set of infervals is the maximum number that
contain any point in fime-line.

Key observation. Number of classrooms needed 2> depth.
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Interval Partitioning Lower Bound

Example: Depth of schedule below = 3 '

Question: Does there always exist a schedule equal to depth
of intervals?
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Idea

@ Number classrooms 1, 2, 3, ..

@ Sort intervals in some order: for each interval,
assign it to first available classroom

@ What order?



Interval Parftitioning: Greedy Solution

Sort infervals by starting time so that s; < s, < .. £ 5.
k < 0 // Number of classrooms

for j=1ton{
if (lecture j is compatible with some classroom i < k)
schedule lecture j in classroom i
else
allocate a new classroom k + 1
schedule lecture j in classroom k + 1
k «< k +1

Complexity?



Scheduling to Minimize
Lateness

@ Single computer processes one job at a time.
@Jobs i =1,2,..,n:

@ Processing time t;

@ Deadline d;

® Start time s; -> finish time f; = s; + 1.
o Lateness: |, =max {0, f -d }.

1<i<n

@ Goal: schedule start times of all jobs to minimize
maximum lateness L = max |;.



Scheduling Example

Job

Processing time ti

Deadline of

Attempt 1: Sort by t

lateness = 2 lateness = 6
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Max lateness: 6



Scheduling Example:
Smallest Slack time first
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Max lateness: 1



Scheduling Example:
Earliest Deadline First
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Max lateness: 1



Minimizing Lateness:
Analysis

@ Claim: scheduling jobs by their deadline is
optimal

@ Lets establish some basic facts for the proof..



Minimizing Lateness:
No Idle Time

Observation. There exists an optimal schedule
with no idle fime.
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Observation. The greedy schedule has no idle
time.



Minimizing Lateness:
Proof Approach

@ Idea: start with an optimal solution with no idle
time, and gradually transform it info the greedy
solution (*), without increasing the maximum
lateness

@ Discuss and outline on board



Minimizing Lateness:
Inversions

An inversion in schedule S is a pair of jobs i and j
such that i is scheduled before j but d; < d..
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Minimizing Lateness:
Inversions

® Goal: modify optimal solution to eliminate
inversions to match greedy solution. But: this
might not give exactly the greedy solution.

@ Lemma A: all solutions with no idle time and no
inversions have same maximum lateness

@ Proof on board



Minimizing Lateness:
Proof!

® Theorem: the greedy solution is optimal

@ Proof on board



Proof Strategies for
Greedy Algorithms

@ Greedy algorithm stays ahead. Show that aftfer
each step of the greedy algorithm, its solution is
at least as good as an optimal solution.

@ Exchange argument. Gradually transform an
optimal solution to the one found by the greedy
algorithm(*) without hurting its quality.

(*) Or one just like it



