Chapter 4.
Greedy Algorithms

@ Interval scheduling
@ Greedy overview
@ Shortest paths

@ Minimum spanning frees

What is a greedy
algorithm?

@ Hard to describe, but I know it when I see it!

Interval Scheduling

@ Schedule n jobs: j™ job has start time s;, finish time f;.

@ Two jobs compatible if they don't overlap.
@ Goal: find maximum size subset of mutually compatible jobs.

Greedy Template

A«
while (there are jobs compatible with A)
pick "best” compatible job j
A=AuU{j}
}

return A

Greedy: pick j and never look back
What rule to use?

Interval Scheduling: Greedy Solution

@ Idea 1: Earliest start time. Consider jobs in ascending
order of start time s;.

e
F

.
ot N

9 10 11

0 1 2 3 4 5 6 7

(0]

Interval Scheduling: Greedy Solution

@ Idea 2: Shortest interval. Consider jobs in ascending
order of interval length f; - s;.

0 1 2 3 4 5 6 7 8 9 10 11

Interval Scheduling: Greedy Solufion

@ Idea 3: Fewest conflicts. For each job, count the number
of conflicting jobs c;. Schedule in ascending order of

conflicts c;.

B

0 1 2 3 4 5 6 7 8 9 10 11

Interval Scheduling: Greedy Solufion

@ Idea 3: Fewest conflicts. For each job, count the number
of conflicting jobs c¢;. Schedule in ascending order of

conflicts c;.

h, b, e

DDA OTOTONPD WO

(@)
—
N
w
»
o1
o
~
(o}
O
o
T

Interval Scheduling: Greedy Solufion

@ Idea 4: Earliest finish time. Consider jobs in ascending
order of finish time f;.

ot N

0 1 2 3 4 5 6 7 8 9 10 11

Earliest Finish Time -
Optimal Solution

Sort jobs by finish times so that f; < f, < ... < f,.

A« §
for j=1ton §
if (job j compatible with A)
A =AUt
;

return A

Proof and running time on board

Greedy Overview

@ Build up solution by adding items one at a time
@ Choose next item by simple heuristic, never remove items

@ Prove that the result is optimal!

@ Simple algorithm -> hard part is proving it correct

@ Running time usually n log n or worse: need to sort items

Interval Partitioning

Lecture j starts at s; and finishes at f;.

Goal: find minimum number of classrooms to
schedule all lectures so that no two occur at the
same time in the same room.

I

H

9 9:30 10 10:30 .. .11"11:30. 12902 30T i3 0= 2 SiiSUEE S s SHanaea 130 Timre

Interval Partitioning Lower Bound

The depth of a set of infervals is the maximum number that
contain any point in fime-line.

Key observation. Number of classrooms needed 2> depth.

I

T

H

9 9:30 10 10:30 " ‘11 11:30 ' 12 12:30 e N SO Zss g Omusanaestiss g « 4:30 Tim'e

Interval Partitioning Lower Bound

Example: Depth of schedule below = 3 '

Question: Does there always exist a schedule equal to depth
of intervals?

I

I S e

|I

9 930 1010:30 11 11:30 1212:30 1 130 2 2:30 3 3:30 4 4:30 Tim'e

f
. A f : :

I

R
>

9 9:30 10 10:30 11 11:30 121280 1:30... 2 2:30 8sa8:30 4. 4:30 Timye

Idea

@ Number classrooms 1, 2, 3, ..

@ Sort intervals in some order: for each interval,
assign it to first available classroom

@ What order?

Interval Parftitioning: Greedy Solution

Sort infervals by starting time so that s; < s, < .. £ 5.
k < 0 // Number of classrooms

for j=1ton{
if (lecture j is compatible with some classroom i < k)
schedule lecture j in classroom i
else
allocate a new classroom k + 1
schedule lecture j in classroom k + 1
k «< k +1

Complexity?

Scheduling to Minimize
Lateness

@ Single computer processes one job at a time.
@Jobs i =1,2,..,n:

@ Processing time t;

@ Deadline d;

® Start time s; -> finish time f; = s; + 1.
o Lateness: |, =max {0, f -d }.

1<i<n

@ Goal: schedule start times of all jobs to minimize
maximum lateness L = max |;.

Scheduling Example

Job

Processing time ti

Deadline of

Attempt 1: Sort by t

lateness = 2 lateness = 6

0 R | AN R AR ot o e s R G R S L)

Max lateness: 6

Scheduling Example:
Smallest Slack time first

0 R | AN R AR ot o e s R G R S L)

Max lateness: 1

Scheduling Example:
Earliest Deadline First

0 R | AN R AR ot o e s R G R S L)

Max lateness: 1

Minimizing Lateness:
Analysis

@ Claim: scheduling jobs by their deadline is
optimal

@ Lets establish some basic facts for the proof..

Minimizing Lateness:
No Idle Time

Observation. There exists an optimal schedule
with no idle fime.

0501 2ape3 4 Bamdb e 8 - 9T

o 1 2.3 4y Dse T o Sl 8 G o e

Observation. The greedy schedule has no idle
time.

Minimizing Lateness:
Proof Approach

@ Idea: start with an optimal solution with no idle
time, and gradually transform it info the greedy
solution (*), without increasing the maximum
lateness

@ Discuss and outline on board

Minimizing Lateness:
Inversions

An inversion in schedule S is a pair of jobs i and j
such that i is scheduled before j but d; < d..

0, <l 2 3 475 ol o8 9 @RI 2" TS 14 AT D

Minimizing Lateness:
Inversions

® Goal: modify optimal solution to eliminate
inversions to match greedy solution. But: this
might not give exactly the greedy solution.

@ Lemma A: all solutions with no idle time and no
inversions have same maximum lateness

@ Proof on board

Minimizing Lateness:
Proof!

® Theorem: the greedy solution is optimal

@ Proof on board

Proof Strategies for
Greedy Algorithms

@ Greedy algorithm stays ahead. Show that aftfer
each step of the greedy algorithm, its solution is
at least as good as an optimal solution.

@ Exchange argument. Gradually transform an
optimal solution to the one found by the greedy
algorithm(*) without hurting its quality.

(*) Or one just like it

